
29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

Distributed Audio Mixing Network (DAMN)
Johannes Giani1, Masih Jakubi1, Dominik Litfin1, Andreas Rehbein1, Johannes Röhn1

1University of Applied Sciences Cologne, Germany, Email: johannes.giani@googlemail.com

Abstract
Networked digital audio mixing consoles and systems have emerged over the last years and experienced perpetual
penetration of the professional audio market. Despite the observation that interconnected IT-Solutions are influencing
today’s audio products, all available mixing consoles share the same principle: central signal processing. In centralistic
approaches all the audio signals are transferred via proprietary or standardized transport technologies to one central
node within the network environment. At this central point all signal processing takes place. The idea behind the
university project Distributed Audio Mixing Network (DAMN) is to erupt such boundaries. The result is an operational
prototype system that is decentralized, meaning that processing of audio signals shifts away from one central node
towards the edge nodes of the audio network. This enables enormous potential not merely in the matter of scalability.
Systems can easily be extended as the processing capacity grows with the number of nodes which hold the audio I/O
available. DAMN also provides an intuitive GUI that is accessible through any Web-Browser and is optimized for
touch-enabled devices. The GUI gives the user the ability to control the system and to mix the audio signals using the
flexible channel concept of the DAMN system. DAMN reveals exemplarily how tomorrow’s mixing systems can look
like - distributed, flexible and scalable.

1. Introduction
The distributed audio mixing network (DAMN) is a prototype
developed by five students of the University of Applied
Sciences Cologne, Germany. The project was part of the
masters degree program in media technology.

In order to come up with our idea of a distributed, scalable
and flexible audio mixing system we first had to analyse how
todays systems work. We considered a typical setup for live
audio production which commonly consists of the following
devices: A mixing console, Stageboxes with I/O functionality
and a network that provides the infrastructure for signal
transportation. These systems follow a centralized approach,
meaning that the stageboxes feed an unprocessed ”raw”
signal to the console (or its external processing unit), which
returns the processed signal back to the output interface. In
short, all the signal processing and control takes place inside
the console. Upgrading the DSP and/or I/O capabilities
is a very costly affair, and even if there are no financial
limitations, there are certainly hardware restrictions. In
addition, such systems very often suffer from inflexible signal
processing and routing, which means one cannot choose
between e.g. different EQs or change their order in the signal
flow. Furthermore it is not possible to built complex signal
chains because of constrained chaining options. Finally the
broad majority of consoles are designed as a single operator
device, making cooperative work practically impossible.

Besides this classic approach of system devices and
processing, a new trend regarding signal infrastructure has
emerged. A rising number of companies are switching over
from baseband technology towards IT networking solutions.
In our opinion this is a promising way to overcome the
restricted scalability and flexibility we just described. By
connecting all system devices over a network and using low
latency, real-time capable protocols for signal transport and

control messages, it is possible to distribute the processing
power over all the nodes in this network, practically
decentralizing the mixing system. Modern networking
technology also allows for much more scalable systems,
as it can easily be expanded by adding new switches and
routers. With these advantages in mind, our aim was to built a
working prototype of a distributed audio mixing network that
showcases its possibilities, limitations and potential future
applications.

In the following chapters we will introduce our concept
for the system, as well as the resulting prototype and required
technical solutions, before summarizing the results and
pointing out prospects for further research.

2. Concept
In this chapter we will take a closer look on the basic concept
of our mixing system. An important part of the project
was to provide flexible audio processing and routing. To
reach this goal, we came up with a new channel concept
that differs from the more traditional approach in most other
systems. Whereas normally the operator has to choose
between different channel types like Inputs, Auxes or Master
channels, there is no such categorization in our approach. A
DAMN-channel is designed to be multi-purpose, meaning
that it can serve as all of the types mentioned above and
it even may have several in- and outputs at the same time.
As illustrated in Figure 1, such a channel consists of three
sections: The input-section mixes all connected inputs
together. If multiple inputs are connected, every delay and
level parameter of the incoming signals are being adjusted to
ensure phase accurate mixing. The resulting signal will then
be processed by a maximum amount of four DSP-Plugins
per channel (DSP-section). The operator can choose between
an equalizer, a limiter, a compressor and an expander in no
fixed order, meaning that after adjusting all parameters it is



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

Fig. 1: The DAMN-channel concept consists of three main sections:
Input, DSP-Plugins and Output.

still possible to change their arrangement in the signal flow
without loosing any settings. At the end, the output-section
provides connectivity to one or more desired destinations. An
adjustment of the signal level at this point is not required, as
every new destination provides this functionality as part of its
input-section.

The following subsections will be discussing function
and structure of the three main components: The Network,
the DAMN-Endpoint and the Controller. They are illustrated
in figure 2.

2.1. Network
All the nodes in our decentralized system are connected via a
network with special requirements. One requirement for the
network is the capability for the transport of all the relevant
signals via a single cable. The connection follows a star-
topology for maximum flexibility with a switch in the middle
to which all nodes are connected. Open standards ensure
transparency and future compatibility with other systems.
Most importantly, the network had to be capable of real time
audio transport and control for multiple users, which also
includes the knowledge of all signal propagation delays at any
time in the network to ensure phase accurate mixing.

2.2. DAMN-Endpoint
The DAMN-Endpoint is a device which offers necessary
functionality to form the decentralized system together with
other devices of its kind. Located on the edge of the network,
it provides analogue audio in- and output interfaces with
pre-amplification of the input signals, analogue to digital
conversion (and vice-versa), level adjustment as well as the
possibility to delay the output signals. It is also responsible for
signal processing, which is a major benefit. By combining I/O
and DSP functionality on the same device we ended up with
a very extendible approach, meaning that adding a DAMN-
Endpoint to the network will not only provide more physical
I/O to the user, but at the same time increase processing
capabilities of the whole system. To efficiently manage
the resources for internal signal transportation between the

Fig. 2: The DAMN Architecture and its components

endpoints, they are also able to mix signals together in order
to combine them in one stream for transmission. This proved
far more effective than streaming every signal separately.

2.3. Controller
The controller can be considered as the brain of the DAMN
system. It had to be flexible and platform independent, thus
we decided to realize it as a web-application using modern
web technology standards. It is designed for wireless use
on a tablet computer but also works great on any device
with a modern web browser and sufficient screen size. By
adding multitouch-functionality, it is able to simultaneously
control multiple faders at the same time, just as any hardware
mixing console. It is responsible for user interaction and
network management. Therefore, the application logic was
implemented in the controller to efficiently manage DSP and
streaming resources of all nodes in the network. The decision
which resources are being used is based on several different
parameters:

1. Physical input and output
A smart choice of the physical input and output of a
signal can minimize its propagation delay in the system
and avoid unnecessary streaming of signals from one
endpoint to another.

2. Resource usage
Resource usage in the system can differ depending on the
current configuration, which has to be taken into account.

3. Resource availability
If there is no more capacity left on one endpoint, the
system will try to choose another endpoint in the network
to process the signal. In case this is not possible, the user
will be notified.

The application logic is also responsible for the compensation
of all signal delays that occur during transport and processing
within the system. The possibility of setting a separate delay
on every endpoint in the network is used to ensure phase
accurate mixing and synchronized signal output.



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

3. Prototype
The exemplary implementation of the DAMN concept lead
to a working prototype system which verifies the approach in
terms of a proof of concept. The prototype system is separated
into three parts as described in section 2 namely the network,
the endpoints and the controller. The following subsections
are going to describe all of the three implementations in
greater detail and will gfive insights into occurred problems
and obstacles.

3.1. Network
The network part of the DAMN concept is the central
communication point and accomplishes several tasks. At
first it should transport uncompressed audio data between
the DAMN-endpoints of the system in real time. Secondly,
it must manage the control data for several platform-
independent users. These points lead to two key components
of the DAMN-network, which are the real-time audio network
and the server. These are going to be described subsequently.

3.1.1. Real-Time Audio Network

The utilization of a real-time audio standard derives from the
demands the interface has to meet. It must carry sensitive
real-time audio as well as control data whilst remaining
scalability. State of the art digital audio interfaces such as
MADI are not able to handle all of these requirements and
are inflexible in terms of the usable topology.
The Audio Video Bridging (AVB) standard by the Institute
of Electronics and Electrical Engineers (IEEE) fulfills the
required capabilities while being of low costs (license free).
In spite of that, alternative technologies like Audinate Dante
or Alc NetworX RAVENNA would also be eligible, but
there was a lack of available development boards for the
prototyping purposes of this limited university project.
AVB guarantees a deterministic delay of 2 ms over up to
seven network hops between a source (AVB talker) and a sink
(AVB listener) by enhancing the widely used Ethernet (IEEE
802.3) standard [1]. The three AVB extensions adapt the
OSI layer 2 of standard Ethernet for synchronization (gPTP;
IEEE 802.1AS), quality of service (FQTSS; IEEE 802.1Qav)
and fixed bandwidth reservation mechanisms (SRP; IEEE
802.1Qat), as well as an integrated OSI layer 2 transport
protocol IEEE 1722 [2]. Another aspect of the AVB standard
are the integrated AVDECC control protocol, which is also
used in the DAMN prototype [3].
In contrast, the main drawback of AVB are the special
requirements to the hardware, which lead to dedicated
AVB-capable switches and endpoints. In case of the DAMN
prototype, the 5 port Fast Ethernet AVB switch of DSP4YOU
(AVB-SW [4]) was used, which was totally sufficient for the
prototyping purposes. The special endpoints hardware will
be described in section 3.2.

3.1.2. Server

The server component of the network is responsible for the
DAMN control management. It consists of a central server
device which processes several tasks. On the one hand, it has
to deliver the web content to the clients. On the other hand,

Fig. 3: DAMN Server component

it has to manage all the communication between multiple
DAMN-endpoints and possible several controller instances.
In terms of the prototype system the server utilizes a
virtualized Linux distribution on which the two server
instances run. An Apache webserver delivers all the content
needed for the client device to display the GUI for mixing.
Furthermore, the application logic is served via HTTP as part
of the GUI. The central communication server is realized
by a Node.js server. Node.js is a JavaScript based server
approach for the handling of multiple parallel connections
in a real-time context, which is required in the DAMN
system. The server deploys the WebSockets protocol for low
latency communication with the controller devices using
low overhead HTTP communication via the UDP transport
protocol and JSON data elements. [5]
Besides, the communication between the server and the
DAMN-endpoints is realized via the AVB integrated
AVDECC protocol. The server translates all commands
received via the WebSockets interface to the AVDECC layer
by shell-execution of the avdecc-cmd command line tool by
J.D. Koftinoff [6] and the other way around. This open-source
tool was extended in terms of the DAMN command types, so
the special vendor defined AVDECC GET and SET control
payloads could be executed and evaluated. The response is
always sent back to the responsible controller device via the
JSON data type. The basic parts of the server are described in
figure 3.
The final part of the network consists of a WLAN router
device which enables wireless access for e.g. touch devices
such as an Apple iPad. The router additionally handles the
DNS resolution of the HTTP webserver.

3.2. Endpoints
The endpoints of the DAMN system are responsible for
the actual decentralized audio processing in terms of DSP
as well as in- and output of audio signals. The flexible
channel concept of DAMN is realized here. All of the
endpoints are inter-connected via the real-time AVB network
for low latency streaming between all endpoints. Endpoint
control is realized via AVDECC messages as described above.

3.2.1. Development Boards

The implementation of the endpoint device in terms of the
DAMN prototype is based on XMOS AVB Audio Endpoint [7]
development boards. These offer basic AVB capabilities such
as two unbalanced analog in- and outputs and AVB streaming
of up to eight channels in one AVB listener respectively talker
stream. The provided open-source firmware written in C and



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

Fig. 4: DAMN Endpoint High Level System Architecture

the special XMOS XC language already implement the basic
functionalities needed for streaming and control while still
being expandable. The XMOS XS1 dualcore multithread DSP
microprocessor provides spare processing power and memory
which is used for DAMN system purposes. Figure 4 shows an
overview of the extended DAMN firmware. The DAMN parts
of the implementation are located between the I2S component
and the AVB listener and talker as part of the audio subsystem.

3.2.2. DSP Implementation

The DSP implementation pursues different targets. On the
one hand it has to manage the flexible mixing concept of
DAMN. On the other hand it should offer DSP processing for
signal manipulation. Unfortunately, the DSP implementation
was highly dependent on the processing power of the XMOS
XS1 DSP, which had several limiting issues in terms of
available memory.

The DSP implementation is based on a parallel multi-threaded
architecture on the XMOS multi-core processor. Figure 5
illustrates the DAMN-endpoint processing. At the input
processing stage, all the needed delays for in-phase mixing
are applied to the local or AVB input samples. In the next
step, they are handed over to the central DSP mixing process
where the flexible mixing and routing concept of DAMN
is realized. Depending on the current configuration, each
of the processed DAMN channels may have several inputs
like AVB or local inputs or even other DAMN channels.
These signals are all mixed together into one output signal
per channel which can be delayed as well. For each of
the channels, the DSP processing is triggered in a separate
parallel process. Furthermore, the output processing applies
additional processing such as delays before the samples are
sent through the network or local outputs. The AVB output
channels of the endpoints also received separate mixing
capacity to reduce the amount of totally used AVB channels,
as there are only eight available per prototype device.

Overall the implementation was limited by the small amount
of memory of only 64 KB per core. A second limitation
was the full occupancy of the available 16 threads on the
XMOS chip. The memory had to be allocated dynamically
to host all of the required variables. Furthermore, the AVB

Fig. 5: DAMN Endpoint processing

playout buffer had to be reduced from 2 ms to only 0.5 ms to
handle all the data. The limited processing power results in
a maximum number of processable channels per endpoint of
eight and a maximum amount of 72 inputs. The maximum
delay was defined to 833 µs for AVB inputs respectively 1.3
ms for local inputs and DAMN channels.
The following DSP algorithms have been implemented: A
four band EQ, a compressor, a limiter and an expander. The
number of DSP units per channel was defined to four. In
total, up to six EQ, respectively 13 dynamics DSP algorithms
can be processed. The EQ implementation is based on IIR
Biquad filters.

3.2.3. Control

The control of the endpoints including the DSP and mixing
processing was realized via the AVB integrated AVDECC
protocol. These were already implemented in the provided
firmware and had to be extended by special DAMN
commands.
The AVDECC protocol is made up of three sub protocols:
ADP (discovery), AECP (enumeration and control) and
ACMP (connection management). The ADP is responsible
for the detection of AVB capable devices in the network and
ACMP manages the connections between these. Moreover,
the AECP protocol defines how the functional structure of
AVB devices is described by the AVDECC Entity Model
(AEM). This model describes an endpoint in detail based
on the so called descriptors for each of the functions e.g.
volume control of a signal or stream input/output port.
Additionally, AECP defines how these properties/descriptors
can be controlled and modified via dedicated commands.
For the DAMN prototype we used vendor defined CONTROL
descriptors to represent the current DSP and mixing
configurations of each endpoint. CONTROLS were defined
for e.g. a mixer/channel structure of an endpoint or a DSP
unit. This CONTROL can be modified and read out via
dedicated GET and SET CONTROL commands with special
payload. This payload is built as well as evaluated in a
dedicated application task of the XMOS firmware. The
process has direct on-the-fly access to the DSP and mixing
variables to modify the current audio processing without any
delays.
Furthermore, the ADP DISCOVER functionality is used
by the controller to detect available DAMN devices in
the network. The ACMP messages are used without any
modifications to connect the AVB streams of the DAMN
endpoints with each other for the streaming of real-time
audio.



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

3.3. Controller
The controller section of the DAMN concept is the most
important part as it manages and controls all of the DAMN
endpoints via the network. It can be considered as the ”brain”
of the DAMN system and it is possible to have multiple
instances. Furthermore, the GUI also played a major role
during the implementation as it needs to provide an easy
way of handling the flexible channel concept on multi-touch
enabled devices. As the implementation of the controller was
devided into two main parts, subsequently the GUI and the
application logic, our web application will be presented in
detail.

3.3.1. Graphical User Interface

The GUI of the DAMN-controller is the visible interface
to the user. It does not reveal the decentralized aspect of
the DAMN system and is usable as a flexible and scalable
mixing application. Nonetheless, it is roughly based on
a traditional mixing consoles interface to provide instant
familiarity and quick access to the user. The GUI employs
the advantages of a software-based interface in combination
with touch-sensitive devices like tablet computers to improve
the usability of the whole system. Because of the vast amount
of different screen sizes, the application is designed to adapt
itself graphically. Nevertheless we recommend a minimum
screen size of 7.9 inch (e.g. Apple iPad mini). Furthermore,
the GUI supports multitouch gestures for simultaneous
handling of multiple graphical elements. This improves
usability especially when mixing audio signals with the
faders and adjusting equalizer parameters. For non-mulitouch
enabled devices the handling has been adapted accordingly,
but note that a simultaneous operation of the faders will not
be possible.

The GUI’s job is to provide the control interface and
display the current state of the system graphically. This can
be further categorized into the following tasks:

• Display and control of in- and outputs of a channel

• Display and control of a channel’s DSP

• Display and control of mixing functionality of a channel

• Display of the current signal level of a channel

To provide a functional and clear usage we defined several
further requirements for the GUI: It has to display the faders
in a reasonable size at any time during operation, which is
why the maximum amount of faders displayed depends on
the screen size. The operator must be able to add and delete
channels dynamically, rename and color-code them. The
displayed channels and all of their functions must always be
selectable. Moreover the exact numerical volume must be
visible at any time.

Operation The GUI’s main window is divided into three
main sections: The selected channel on the left, the channel
strip area in the middle and the control-panel on the right.
Depending on the system’s state the channel strips will be
further divided into an upper and lower part, as displayed in
figure 6:

Fig. 6: Partitioning of the GUI into four areas

Each of the channel strips provides control of the following
functionalities:

• I/O: Manage in- and outputs of the channel

• DSP: Add, remove and adjust signal processing algo-
rithms

• MIX: Manage the level of all the channels inputs

• PAN: Control the channel’s panning (not implemented in
the prototype)

• PFL: Pre-fader listening (not implemented in the proto-
type)

• MUTE: Mute the channel

• FADER: Control the level, display metering

• SELECT: Select the channel and show its parameters

The operator can either select a channel by tapping on its
name field on the bottom, or directly tapping on one of
the described software buttons which will instantly display
the desired function and trigger the channel selection at the
same time for convenience. The current selected channel is
always displayed on the left of the screen for quick access,
whereas the channel strip area can be moved left and right by
horizontal swiping. Furthermore, the GUI offers several views
for different control scenarios like the flexible mixing, DSP
customization or input/output routing of a channel. Figure
7 shows the DSP-view on top of the faders, which remain
movable. The control-panel on the right hand side provides
buttons to add a channel, save and load configurations, display
an overview of all current system parameters, open a debugger
window with system alerts and eight user defined ”uKeys”
which are fully configurable. In addition, this panel provides
three indicators for system resources, namely the currently
used DSP, AVB and MIX capacities in percent.

Implementation As the controller had to be platform in-
dependent, the application needs to work with any modern
web browser. Thus, it was realized as a web application
based on HTML5, JavaScript and CSS3. Because the DAMN
mixing system consists mainly of dynamic elements, the static
HTML index page only provides three div-containers for
the main sections described in this chapter and includes all
required CSS and JavaScript files, which generate all other
components dynamically during runtime. For the complex



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

Fig. 7: DSP-view with active equalizer

GUI constructions we used the jQuery library and to add
multitouch functionality on touch devices the Hammer.js
JavaScript library was utilized. [8] [9] Finally, the whole logic
was also integrated into the web application, which executes
the actual commands on the network involving the server and
the endpoints.

3.3.2. Logic

The application logic of the controller is the actual brain of
the system and knows all the states of the available endpoints
in the system. It enables the interaction of the endpoints
and always keeps the current latency and resource usage in
mind. The following responsibilities have to be managed by
the logic:

• Connection of the different endpoints and AVB streams

• Resource optimized placement of the channel processing
on the DAMN endpoints

• Execution of commands to modify channel parameters
such as volume and DSP

• Delay management

The implementation was realized entirely in object based
JavaScript language as part of the web application. Fur-
thermore, the most complex task of the logic turned out to
be the correct assignment of the channel processing to a
specific DAMN-endpoint. This decision depends on several
factors such as the number of inputs, the main output and
the remaining DSP capacities of the endpoints. Hence, the
utilized resources such as the number of AVB streams and
the resulting latency of the system should be minimized.
Therefore, a dedicated function checks all possible setups and
chooses the best one to be used. This function also gathers
all relevant information to build a list of parametrized com-
mands, that will be executed sequentially. Those commands
trigger any action needed to build a channel, e.g. connection
establishment. When every command of the list is executed
successfully, the new channel is created and can be operated.

The delay management also was part of the logic as the
delays of signals in the system should be compensated and
self regulatory without user interaction. For this purpose the
following steps are processed when a new channel is added or
the setting of an existing channel is edited:

1. Calculation of channel flows (flexible channel concept)

Fig. 8: DAMN control flow

Fig. 9: DAMN prototype architecture

2. Calculation of the minimal total delay

3. Calculation of the delay of physical outputs

4. Setting of the calculated delays on the DAMN-endpoints

The execution of the commands such as volume control or
channel assignment is realized via JSON objects which are
sent through the WebSockets interface to the server. The
server then parses and translates the received commands and
interacts with the DAMN-endpoints by using OSI layer 2
AVDECC commands. The response of the endpoints is then
translated back into JSON objects and sent to the controller
and so on. The whole control flow of the DAMN system is
shown in figure 8.

To sum up the implementation, figure 9 shows an overview
of the finished prototype and the used technologies. The
most significant problems were the limitation of the devel-
opment boards in terms of memory and processing power,
which limited the maximum number of channels and inputs.
Additionally, the huge amount of AVDECC messages which
have to be sent and evaluated by the server and controller were
critical, but this problem could be solved.

3.4. System delay measurements
This section lists the results of our system delay
measurements. Every measurement was performed several
times to ensure significant test results.

The system delay test was performed as follows: Via a
DAW-Software we send a unit-impulse function into the
local input of a DAMN-Endpoint. Here the local input was
forwarded directly and without mixing functionality to a local
output. The output signal was recorded in the DAW-Software
and the delay was measured. We used the RME Fireface UC
audio interface. This procedure was repeated with the signal
passing a DAMN channel as well as streaming it via the
AVB-network. The result showed 24 samples (500 µs) delay
when sending the signal directly from local in- to output and



29th TONMEISTERTAGUNG - VDT INTERNATIONAL CONVENTION, November 2016

27 samples (562.5 µs) when sending it through a DAMN-
channel. This means that the channel produced 3 samples of
delay. When streaming the signal via the AVB-Network the
result showed an average delay of 50 samples (1041.6 µs),
which equals a delay of 25 samples (520.8 µs) caused by
AVB. These delays were measured without the usage of the
delay compensation of the system, which would compensate
all delays resulting in the same delay for every signal.

4. Conclusion
This paper’s subject was the conception and the prototyp-
ing of a distributed audio mixing system based on network
technologies abbreviated as DAMN. Mainly it was supposed
to show the potential of a decentralized and highly scalable
approach in contrast to almost all state of the art central
mixing consoles with fixed capacities. Additionally, a flexible
signal processing and routing as well as a multi-user concept
were in the scope of this project.

At the beginning, the new DAMN concept was presented
and the three parts, namely the endpoint, the network and
the controller were introduced. The DAMN-endpoint handles
the decentralized digital signal processing as well as in- and
output of the actual analogue signals. The central scalable
network part manages the low latency audio connections as
well as control traffic through a star topology. At last, the
controller device is responsible for the user interaction and
the network management while being platform independent
and multi touch enabled.

The exemplary implementation was based on XMOS
development boards using the AVB low latency standard.
These accomplish flexible signal processing and routing in the
firmware, allowing a maximum of eight channels per device.
The network was based on a server/client topology involving
a Linux Node.js server which interacts through WebSockets
with the controller. Furthermore, it communicates with
the endpoints via AVDECC. All of the devices are inter-
connected per a central AVB 5 port switch plus a WLAN
router for wireless control. Finally, the controller device was
implemented in a multi-touch optimized web-application
which can be executed on any current web browser.

The DAMN project showed that a decentralized approach of a
mixing system is functional. It has to be said though, that
the implemented prototype consisted of just two low cost
AVB endpoints due to budget limitations. Nevertheless, it
revealed the feasibility of a scalable mixing system based on
a real-time network. The scalability enables users to flexibly
choose the desired setup and to be independent from fixed
mixing consoles, which finally safes expenses. Furthermore,
the introduced flexible channel concept enables the user to
use a universal channel for all kinds of purposes by simply
modifying its properties. In addition, the innovative web
application GUI makes it possible to dynamically control the
system with multiple control instances and offers a high level
of comfort through multi touch support.

Further developments should prove the concept with more
than two endpoints and one switch, which in theory is possible
with the current implementation. The system should be tested

in a more practical environment as the concept is eligible for
live or studio context. Besides, a more powerful hardware
should be used to erupt the limitations in signal processing.
The PFL and panning functions have not been implemented
and should be realized. The functionality of the server may
be moved into the endpoints, effectively decentralizing it as
well. This would also have positive effects on redundancy.
For a more user friendly haptic control of the system, the
integration of a hardware controller would be desirable. Other
relevant aspects are: User administration, an open plug-in
architecture and the future of the AVB technology, which
will be succeeded by TSN. Nevertheless, DAMN does not
dependent on a specific network technology, as the concept
can be translated to any real-time capable audio network
technology.

5. References
[1] Hyung-Taek Lim, Daniel Herrscher, Martin Waltl, and

Firas Chaari. Performance analysis of the ieee 802.1
ethernet audio/video bridging standard. In George
Riley, Francesco Quaglia, and Jan Himmelspach, editors,
Fifth International Conference on Simulation Tools and
Techniques.

[2] Microprocessor Standards Committee of the IEEE
Computer Society. Ieee std 1722-2011, ieee standard for
layer 2 transport protocol for time-sensitive applications
in bridged local area networks.

[3] Microprocessor Standards Committee of the IEEE
Computer Society. Ieee std 1722.1TM-2013, ieee
standard for device discovery, connection management,
and control protocol for ieee 1722TM based devices.

[4] DSP4YOU. Product brief - avb-sw. URL: http:
//www.dsp4you.com/downloads/Product%20Brief%
20-%20AVB-SW.pdf.

[5] Peter Leo Gorski, Luigi Lo Iacono, and Hoai Viet
Nguyen. WebSockets: Moderne HTML5-
Echtzeitanwendungen entwickeln. Hanser, München,
1. aufl. edition, 2015. URL: http://ebooks.ciando.com/
book/index.cfm/bok id/1835005.

[6] Jeff Koftinoff. avdecc-cmd. URL: https://github.com/
jdkoftinoff/avdecc-cmd.

[7] XMOS Ltd. Avb-audio-endpoint-product-brief 1.5.
URL: http://www.xmos.com/support/boards?product=
14769&component=14430.

[8] Jorik Tangelder Alexander Schmitz, Chris Thoburn.
Hammer.js javascript library. URL: https://hammerjs.
github.io/.

[9] The jQuery Foundation. jquery javascript library. URL:
https://jquery.com/.

http://www.dsp4you.com/downloads/Product%20Brief%20-%20AVB-SW.pdf
http://www.dsp4you.com/downloads/Product%20Brief%20-%20AVB-SW.pdf
http://www.dsp4you.com/downloads/Product%20Brief%20-%20AVB-SW.pdf
http://ebooks.ciando.com/book/index.cfm/bok_id/1835005
http://ebooks.ciando.com/book/index.cfm/bok_id/1835005
https://github.com/jdkoftinoff/avdecc-cmd
https://github.com/jdkoftinoff/avdecc-cmd
http://www.xmos.com/support/boards?product=14769&component=14430
http://www.xmos.com/support/boards?product=14769&component=14430
https://hammerjs.github.io/
https://hammerjs.github.io/
https://jquery.com/

	Introduction
	Concept
	Network
	DAMN-Endpoint
	Controller

	Prototype
	Network
	Real-Time Audio Network
	Server

	Endpoints
	Development Boards
	DSP Implementation
	Control

	Controller
	Graphical User Interface
	Logic

	System delay measurements

	Conclusion
	References

